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Abstract—The growing adoption of electric vehicles (EVs) as 
company cars significantly amplifies charging demand and 
produces large power flows that must be carefully controlled. 
The advent of bi-directional charging opens up opportunities 
while simultaneously adding layers of complexity to the design 
of charging plans. Concurrently, installing photovoltaic (PV) 
systems at the company premises enhances sustainability but 
also introduces fluctuations in power generation, posing 
challenges to effective energy management. These complexities 
are compounded by the inherent uncertainties in forecasting EV 
behavior, PV output, and energy pricing, which further 
complicate the design of smart charging solutions. This paper 
introduces a heuristic bi-directional smart charging algorithm 
that generates charging station assignments for limited bi-
directional charging stations and creates charging plans in real-
time while being robust to prediction error. The simulation 
results demonstrate that our approach yields considerable 
advantages compared to benchmarks, including cost reductions, 
peak demand management, and improved PV energy 
utilization. 

Keywords—Smart grid, optimization, electric vehicles, bi-
directional charging, renewable energy 

I. INTRODUCTION 

Climate change and resource depletion are driving forces 
accelerating the adoption of electric vehicles (EVs) and 
renewable energy resources. Global EV sales reached an 
unprecedented ten million by the end of 2023, compared to a 
mere one million previously [1]. Additionally, worldwide 
renewable energy capacity experienced a 50% growth last 
year, reaching 510 gigawatts in 2023 [2]. In this context, two 
significant challenges emerge: First, the uncoordinated 
charging of EVs often leads to substantially higher peak loads, 
which can strain local infrastructure and the broader power 
grid [3]. Second, the challenge of integrating renewable 
energy into existing electrical systems is complicated by its 
intermittent and variable nature. To address these challenges, 
smart charging offers a promising solution. By intelligently 
managing when and how much EVs are charged, smart 
charging can help to mitigate peak loads, balance the 
fluctuations of renewable generation, and also reduce 
charging costs [4], [5].  

Smart charging can be categorized into two types: uni-
directional and bi-directional. Uni-directional smart charging 
strategies address key issues such as minimizing demand and 
energy charges [6], correcting phase load imbalances [7]-[9], 

employing peak shaving [9], [10], and optimizing PV and EV 
sizing for enhanced cost efficiency [11]. Studies on bi-
directional smart charging explore its implementation in both 
front-of-the-meter [12]-[15] and behind-the-meter 
applications [14]-[17] broadening its applicability and 
potential benefits.  

Despite these advancements, research on bi-directional 
smart charging at company premises remains limited, 
especially for systems with PV and company-owned EVs that 
allow centralized control. This area is important since a large 
number of EVs results in significant energy flows and presents 
unique challenges: Cable capacity limitations often prevent 
simultaneous charging for all EVs, even if they are assigned 
to a station. Additionally, specific arrival and departure 
patterns further restrict effective energy management. 
Furthermore, not all charging stations support bi-directional 
charging, and assigning bi-directional vehicles to limited bi-
directional stations poses another significant challenge.  

This study presents a renewable- and cost-aware (ReCo) 
smart charging heuristic algorithm that dynamically generates 
charging station assignments and charging plans in real-time, 
utilizing bi-directional charging for behind-the-meter use 
cases. Additionally, the algorithm adapts to prediction errors 
in energy prices, PV generation, and early EV departures. The 
main contributions of our work are as follows: 

 We developed a real-time bi-directional charging 
simulator and designed a heuristic algorithm to 
optimize the charging plans. The algorithm is fast, 
scalable for real-time implementations, and robust to 
prediction errors. 

 A strategy is developed to assign bi-directional EVs in 
scenarios with limited bi-directional charging stations. 
Effectively utilizing available charging infrastructure 
while accommodating the specific charging needs of 
each EV. 

 Simulations demonstrate that our approach has 
considerable advantages over benchmark algorithms, 
including cost reduction, peak shaving, and utilization 
of PV-generated energy. 

II. SCENARIO 

Generally, EV users and charge point operators have 
differing interests, which can complicate the adoption of 
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centralized charging plans. To effectively utilize bi-directional 
charging, our study focuses on a company premise with 
company-owned cars and PV panels (Fig. 1). The key 
elements are: 

Charging station: includes uni-directional and bi-
directional charging stations, with a power range from 4 to 22 
kilowatts. 

EV: supports bi-directional charging with same discharge 
and charging power ranges. Furthermore, we model the 
charging and discharging behaviors of EV batteries to be 
linear [18]. We utilize historical data from a German company 
to establish two discrete probability distributions for EV 
arrival and departure times. These times are modeled as 
normal distributions, with peak times at 08:00 and 17:00 and 
a standard deviation of one hour each. Acknowledging the 
uncertainty of knowing the actual departure time of each EV 
upon its arrival, we simplify our optimization model by 
predicting that every EV would leave at exactly 17:00. 

PV: The on-site PV generation data (Fig. 2) used in our 
study is derived from weather conditions observed in Dresden, 
Germany, during a summer day in 2023. This data has been 
appropriately scaled to match our simulation needs, with peak 
production reaching 340 kilowatts. Additionally, the 
generation data is treated as predicted values, and is updated 
each 15-minute timeslot to reflect the changing conditions and 
prediction errors. 

Energy costs: Electricity prices are derived from historical 
data from the intraday energy market, as shown in Fig. 3. We 
simplify the pricing model by assuming a constant price for 
each 15-minute timeslot. The cost is calculated based on these 
prices and the total energy used. Similarly, the energy prices 
used in our study are treated as predicted data. It's worth 
mentioning that our analysis does not include any system 
usage charges related to peak consumption. 

Hierarchy of power network: The car park infrastructure is 
represented by a tree of fuses, with each node depicting a fuse 
that can connect to additional nodes, charging stations, or the 
PV system, forming a hierarchical structure.  Each charging 
station is connected to the tree via three-phase alternating 
current. The tree is structured with a depth of three levels, 
mirroring real-world installations, as illustrated in Fig. 4. 

Time of planning: This work focuses on real-time 
planning. EV's information is received upon its arrival at the 
company, for instance, via an app integrated into the EV.  The 
data includes arrival time, estimated departure time, and initial 
state of charge (SoC), in addition to user-specified preferences 

such as desired departure SoC, minimum SoC, and the 
maximum energy that can be discharged. Once this 
information is received, the assignment and charging plan is 
generated. 

III. METHOD 

This work introduces a heuristic approach to minimize 
charging energy costs and increase PV utilization while 
maintaining peak power within a specified range and 
satisfying the EVs' charging needs. The decision variables 
Pn(t) describe the power of EV n at timeslot t. There are a total 
of N EVs, and the duration of each timeslot t is denoted as τ. 
In our study, t is set to 15 minutes. The objective function is 
outlined in (1), weight factors w1 and w2 have the units (1/€) 
and (1/kWh), respectively. The total charging cost from the 
grid CG is calculated over the timeslot from 1 to T, where T 
represents the last timeslot of the day, as detailed in (2). The 
charging energy utilized from the PV system, EPV, is specified 
in (3). Additionally, cGrid(t) represents the unit cost of grid 
energy at any given time t,  and PPV(t) is the output power of 
the PV system. 

The constraints are as follows: the total power drawn from 
the grid must not exceed PPeak (4). Furthermore, the total 

 
Fig. 1. Company premise with a parking lot and PV panels. 

 
Fig. 2. PV output power generated from weather conditions in 

Germany. 

 
Fig. 3. Electricity prices from the intraday market in Germany. 

 
Fig. 4. Hierarchy of power network in the parking lot, showing the 

three-level fuse tree structure. 
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power of all EVs connected to a fuse Fi must not exceed the 
maximum allowable power PFi

 for each fuse in the fuse tree 
(5). For an individual EV, the charging process is determined 
by (6), considering the charging and discharging efficiencies 
denoted by ηC and ηD, respectively, En

max the maximum 
capacity of the EV's battery. Additionally, the ranges for 
charging and discharging power are specified in (7). During 
discharging, the total discharged amount must not surpass 
ΔEn

D,max, and discharging should not reduce the SoC below the 
minimum threshold  SoCn

min (9). Most critically, each EV must 
depart with its desired SoC enforced by (10). 

 Minimize: w1CG w2EPV 

 
where:CG∑ [cGrid(t)⋅ τ⋅ max( ∑ Pn(t)N

n1  PPV(t), (0)]T
t1

    (2)

 EPV [τ⋅ min(PPV(t), ∑ Pn(t))]N
n1  

 s.t: ∑ Pn(t)N
n1  PPV(t) ≤ PPeak 

 ∑ Pn(t)  ≤  PFin ∈Fi
 

 SoCn(t+1)  SoCn(t)  
τ⋅ max (Pn(t), 0)ηC

En
max  τ . min (Pn(t), 0)

En
max ηD  

 Pn
min ≤ |Pn(t)| ≤ Pn

max 

 τ ⋅ ∑ min(Pn(t), 0)≤ΔEn
D,maxtmax 

t0  

 SoCn
min ≤ SoCn(t) ≤ SoCn

max   

 SoCn(t  tn
Leave) ≥ SoCn

Target   

Due to the limited number of bi-directional stations, an 
assignment strategy is essential upon the arrival of each EV, 
as detailed in Fig. 5. When an EV arrives, we calculate the 
charging priority σn

C and discharging priority σn
D according to 

(11) and (13); Δtn  represents the remaining parking time, 
while ΔEn(t) denotes the total required energy. σn

C  indicates 
the urgency of the EV's need for charging. Larger charging 
requirements and limited parking time result in a higher 
priority. δn

D quantifies the maximum potential energy of the 
EV for discharging (12). σn

D  is calculated based on δn
D , by 

scaling it down to a range between 0 and 1 with weight factor 
w3. EVs with a higher potential to discharge more energy are 
prioritized for assignment to a bi-directional station. After 
calculating the priority values, σn

C and σn
D   are compared 

against respective thresholds, θC and θD . Based on these 
comparisons, the EV is assigned to an appropriate charging 
station and a charging plan is created. 

 σC min ( max ቀ
ΔEn(t)

Δtn⋅Pn
max⋅ηC ,0ቁ , 1)   

 δn
D min (

Δtn⋅Pn
max⋅ηC- ΔEn(t) 

2
, ΔEn

D,max) 

 σn
D min (max (

δD

w3
, 0), 1) 

In this work, we model grid energy, PV energy, and energy 
discharged from EVs as resource blocks, each characterized 
by its available amount, timeslot, source, and priority index 
which is calculated according to (14), (15), and (16). A lower 
priority index indicates that the resource block has a higher 
priority. σGrid is associated with the cost of grid energy, while  
σPV is linked to the remaining amount of PV energy. For σEV, 
we assume that the discharging cost is constant, denoted as 
cEV. To optimize the use of discharging opportunities during 
periods of high grid costs and low PV availability, 
σEV includes a small negative component. This component 
serves to differentiate between EV resource blocks at different 
times, ensuring there is a distinction even when the 
discharging costs remain constant. 

After station assignment, a charging plan for the EV is 
generated. All resource blocks available between the EV's 
arrival time and the predicted departure time are sorted based 
on their priority index, from lowest to highest. Then the 
charging plan is filled with these resource blocks until the 
desired amount of energy is reached, considering the 
constraints (7), (9), and (10). This ensures that the charging 
strategy is both cost-effective and aligned with the EV's 
specific energy requirements and schedule. 

 σGrid(t)  cGrid(t) 

 σPV(t)  max (PPV(t)  ∑ Pn(t), 0)N
n=1  

 σEV(t)  cEV(t)  (
σGrid(t)

σGrid,max +
σPV(t)

σPV,max ) 

Following the creation of the charging plan, potential 
violations of the power peak (4) and fuse capacity (5) are 
checked. If any violations occur at specific timeslots, they are 
addressed sequentially. For each violating timeslot, we block 
it and identify the relevant EVs present during that slot. Then 
re-calculate the charging and discharging priorities for these 
EVs and select them from lowest to highest priority. After 
that, for each EV, actions are taken based on its current state: 
if it is charging, we stop it; if it is idle, we initiate discharging. 
The missing energy of the EV during this timeslot due to the 
adjustment is rescheduled to other timeslots by following a 
similar method to the initial charging plan generation. This 
process is repeated until the violation at the current timeslot is 
resolved. 

 
Fig. 5. Flow chart of the charging station assignment strategy.            
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For a bi-directional EV assigned to a bi-directional 
charging station, once the charging plan is generated, the EV 
can potentially provide energy resources during its idle 
timeslots by discharging. The discharging resource blocks are 
generated while taking into account constraints (7), (8), and 
(9). These blocks are then added to the resource block pool 
and made available for selection by other EVs. If an EV is 
discharged at maximum power during a timeslot, it will take 
more than one timeslot to fully recharge due to the charging 
efficiency. Additionally, discharging an EV near its predicted 
departure time heightens the risk of failing to reach the target 
SoC. Consequently, the last two timeslots before the EV's 
expected departure time are reserved and cannot be used for 
discharging.  

In this work, prediction errors are modeled as unexpected 
events, such as early EV departures, PV generation changes, 
and energy price fluctuations. We introduce a randomness 
value r ∈ [0,1] to reflect the uncertainties in the predictions. 
The magnitude of the prediction error is directly tied to the 
value of r, where r = 0 indicates no error and increasing values 
of r lead to more significant deviations. Fig. 6 illustrates how 
these unexpected events are managed: we first block the 
timeslot and then calculate the charging and discharging 
priorities for all relevant EVs (11), (13). Afterward, we assess 
the type of event and determine whether we need to increase 
total power (Case Ⅰ) or reduce total power (Case Ⅱ). For Case 
Ⅰ, we prioritize EVs with the highest priority and start charging 
or stop discharging when they are either idle or in the process 
of discharging. In Case Ⅱ, we use a similar approach to the 
one previously described for solving the violation problem. 
After the action, any violations of (4) and (5) will be checked 
and addressed as necessary. 

IV. RESULTS 

The testing environment for evaluation (Fig. 7) is 
implemented in Python and composed of a data generator, a 

real-time charging simulator, and smart charging algorithms 
including the ReCo algorithm and other benchmark 
algorithms. 

The data generator is based on historical data to generate 
the predicted departure times, electricity prices, and PV 
generation, as discussed in Section Ⅱ. When a prediction error  

occurs, the data generator produces an unexpected event, 
which could be an early EV departure, a fluctuation in energy 
prices, or a change in PV production. The charging simulator 
uses a time-sequencing simulation, where each timestep is one 
second. Various events may occur throughout the simulation, 
such as EVs arriving or departing, EVs reaching their 
maximum or minimum SoC, and unexpected events. Our 
algorithm responds to these events by dynamically adjusting 
or creating new charging plans or charging station 
assignments. 

Table Ⅰ gives an overview of the most important 
simulation parameters that describe the scenario. Table Ⅱ 
shows the list of algorithms where greedy charging and 
schedule guided heuristic (SGH) [9] algorithm are included as 
benchmarks. To reduce noise, each simulation is repeated 20 
times with different seeds. The results are averaged and the 
95% confidence interval is provided. Simulations run on a 

 
Fig. 6. Flow chart of handling violations and unexpected events. 

TABLE. I. Simulation parameters 

Parameter Value 
Number of EVs, charging stations 50/50 
Charging/Discharging efficiency 0.9/0.95 
Min/Max charging power 4/22kW 
Min/Max discharging power 4/22kW 
Max capacity of EV battery 85kWh 
Target SoC 0.8 
Min SoC 0.4 
Max discharged energy in SoC 0.8 
Root/Lv1/Lv2 fuse size 600/80/40kW 

 

TABLE. II. Overview of algorithms 

Label Method 

Greedy 
A first-come-first-serve approach as 
benchmark. 

SGH 
EVs are optimized based on the 
heuristic algorithm in [9]. 

ReCo Uni 
Proposed approach with only uni-
directional charging and 
no charging station assignment. 

ReCo Bidi 

Extends from ReCo Uni which 
assigns EVs to bi-directional charging 
stations based on their potential and 
supports bi-directional charging 
plans. 

 

 
Fig. 7. Block diagram of the simulator. 
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machine with Intel(R) Xeon(R) W-2125 CPU and 32 GB 
RAM. 

Simulation results detailed in Table Ⅲ compare the 
performance of various algorithms during a single day. To 
offer a clearer view of the scheduling, Fig. 8 illustrates the 
aggregated power consumption of all charging sessions 
throughout the day for different algorithms.  

While benchmark algorithms, Greedy and SGH, reveal 
higher peak power and limited adaptability to PV generation, 
the ReCo algorithms demonstrate significant advantages. 
They effectively reduce peak power and respond to changes 
in PV generation and electricity prices, as evidenced by the 
highest PV self-sufficient ratios and the lowest average costs 
among the compared algorithms. Notably, ReCo Bidi 
outperforms ReCo Uni by utilizing EVs' discharging 
capabilities, allowing for greater flexibility and efficiency in 
energy management. It is also important to highlight that, 
despite these enhancements in performance, the ReCo 
algorithm still successfully meets the drivers' charging needs 
at levels comparable to other algorithms. 

In practice, prediction errors are inevitable. To assess the 
impact, Fig. 9  demonstrates how different algorithms perform 
under various levels of randomness, with the ReCo Bidi 
algorithm consistently showing the lowest average cost. As 
randomness increases, ReCo Bidi not only maintains lower 
costs but also manages to charge more compared to other 
algorithms. This is primarily due to its effective response to 
cases such as significantly lower energy prices and higher-
than-predicted PV production, which frequently occur with 
increased levels of randomness. 

Fig. 10 illustrates the grid energy consumption for 
different algorithms under varying PV system sizes. In this 
context, a PV scaling factor of 50 corresponds to a peak 
production of 680 kilowatts. As PV generation increases, all 
strategies reduce their reliance on grid energy. Both ReCo 
algorithms adjust their charging plans to align more closely 
with PV output power patterns, finally reducing grid energy 
use to zero. The ReCo Bidi algorithm shows a steeper decline 
indicating a more flexible and responsive adaptation to 
available PV energy. 

As shown in Fig. 11, when the number of bidirectional 
stations increases, we observe a noticeable reduction in costs. 
However, this cost reduction becomes small beyond 20 
stations, indicating that equipping a parking lot fully with 
bidirectional stations may not be cost-effective when 
considering the installation and purchase expenses. 
Furthermore, our assignment algorithm significantly 
improves station utilization compared to randomly assigning 

EVs to bidirectional charging stations. With the same number 
of bidirectional stations, our approach results in lower costs. 

Table Ⅳ presents the computation time of our algorithm 
across different fleet sizes. The results confirm that the 
increase in computation time is manageable even as the 
number of EVs scales up,  demonstrating the scalability of our 
algorithm. 

V. DISCUSSION 

The smart charging system model presented in this work 
is intended to accurately represent electrical engineering 
constraints to allow solutions to be effectively integrated with 
OCPP 2.0.1 [19] in the future. However, it must be recognized 
that the model contains certain simplifications and limitations. 

Our methodology employs a heuristic approach that does 
not guarantee a globally optimal solution, and due to 
prediction errors, it does not quantify the gaps to this unknown 
optimal. The heuristic model emphasizes managing intraday  

 

 

 

 
Fig. 8. Aggregated power of all charging sessions in the day for 

different algorithms. 

TABLE. III. Performance comparison of different algorithms 

over a single day. 

Algorithm Greedy SGH 
ReCo 
Uni 

ReCo 
Bidi 

EVs reached 
target SoC 

42 50 48 49 

Energy from 
grid (kWh) 

1510 1530 795 822 

Average cost 
(€/MWh) 

60.65 47.89 46.97 43.97 

Energy from 
PV (kWh) 

714 1169 1585 1619 

Self-sufficient 
ratio 

38% 62% 84% 86% 
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event randomness and aims for near-optimal outcomes by 
balancing cost, PV utilization, and peak shaving. 

The model assumes linear charging and discharging 
behavior; however, these processes are non-linear in reality. 
For example, during the 80%-100% charging phase using 
CCCV [20], the charging speed becomes progressively slower 
compared to a linear case, leading to sub-optimal use of the 
charging infrastructure. Similarly, the discharging process 
exhibits non-linearity, which results in further mismatches 
between planned and actual energy flows. Furthermore, 
discharging at low power levels can result in inefficiencies as 
high as 65%. Therefore, prioritizing high-power discharging 
for individual EVs is preferable over uniformly distributing 
low-power discharging across many EVs. 

The charging plan often involves numerous starts and 
stops, which may harm the vehicle's battery life and the 
associated charging components. Vehicles are typically not 
designed for frequent charge-discharge cycles. Designing a 
smoother charging curve could mitigate this issue. 

Our model assumes that the company buys electricity only 
from the intraday market, which may not accurately reflect the 
case of all companies. Moreover, the discharging price is 
supposed to be constant throughout the day, a simplification 
that warrants further analysis to understand its financial 
implications better.    

While it is possible to obtain some of the data in advance, 
such as the arrival and departure times of certain workers, 
leveraging this information to pre-design charging plans can 
optimize operations and provide additional time for 
scheduling. This approach could improve resource 
management and enhance the charging process's efficiency. 

The current model is tailored to the company premises and 
only considers behind-the-meter usage. The pattern of vehicle 
arrivals and departures is centered on early mornings and 
afternoons, respectively. This setup does not fully utilize the 
capabilities of bi-directional charging. Broadening the 
scenarios and use cases could substantially enhance the 
overall effectiveness of bi-directional charging. 

 

VI. CONCLUSION 

This study focuses on the real-time optimization of EV 
charging in a company premise equipped with PV, and both 
uni-directional and bi-directional charging stations. The main 
challenges include meeting drivers' charging needs, managing 
peak loads, reducing costs, maximizing PV utilization, and 
addressing prediction errors such as early departure, energy 
cost change, and PV generation change.  

We present a novel heuristic algorithm that creates 
charging station assignments and charging schedules, utilizing 
the discharging capabilities of EVs to make efficient use of 
limited resources. The algorithm is scalable, robust to 
prediction errors, and capable of real-time operation, essential 
for real-life implementations. Experimental results 
demonstrate that our ReCo Bidi algorithm substantially 
outperforms benchmarks by effectively reducing costs and 
peak demands, tailoring charging schedules to driver 
requirements and PV availability, and dynamically adjusting 
to prediction errors. However, it's important to note that the 
potential of bi-directional charging is not fully exploited. 
Future work will explore broadening the application of 
charging and discharging strategies across multiple locations, 
considering the mobility of cars that allow charging at one 
location and discharging at another. Additionally, we plan to 

 
Fig. 10. Grid energy consumption from different PV sizes. 

 
Fig. 9. Performance for different randomness values. 

 
Fig. 11. Average cost for different number of bi-directional charging 

stations. 

TABLE. IV. Computation time for various fleet sizes. 

Number of EVs 50 100 150 200 250 
Computation time 

of each EV (s) 
0.19 0.30 0.43 0.56 0.68 
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extend our use cases to include front-of-the-meter scenarios, 
enhancing grid stability. 
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